$\mathrm{Cu}-\mathrm{N} 3$	2.035 (2)	C5-C6	1.409 (4)
$\mathrm{Cu}-\mathrm{N} 4$	2.042 (2)	C6-C7	1.434 (4)
$\mathrm{Ol}-\mathrm{Cl}$	1.193 (3)	C6-C14	1.396 (3)
$\mathrm{Cu}^{1}-\mathrm{N} 1$	2.481 (2)	C7-C8	1.346 (4)
$\mathrm{O} 2-\mathrm{C} 2$	1.196 (4)	C8-C9	1.428 (4)
$\mathrm{N} 1-\mathrm{Cl}$	1.147 (3)	C9-C10	1.405 (4)
N2-C2	1.119 (4)	C9--C13	1.398 (3)
N3-C3	1.329 (3)	Cl0-C11	1.363 (4)
N3-C14	1.356 (3)	$\mathrm{C} 11-\mathrm{Cl} 2$	1.385 (4)
N4-C12	1.330 (3)	C13-C14	1.430 (3)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	95.27 (9)	C7-C6-C14	118.6 (2)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	91.70 (8)	C6-C7-C8	121.1 (2)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 4$	172.26 (8)	C7-C8-C9	121.6 (2)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$	167.98 (9)	C8-C9-C10	124.6 (2)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 4$	92.35 (9)	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13$	118.3 (2)
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 4$	80.56 (7)	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{Cl} 3$	117.0 (2)
$\mathrm{Cu}-\mathrm{NI}-\mathrm{Cl}$	143.3 (2)	C9-C10-C11	119.2 (3)
$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 2$	166.3 (2)	$\mathrm{Cl} 0-\mathrm{Cl1}-\mathrm{Cl2}$	120.3 (3)
$\mathrm{Cu}-\mathrm{N} 3-\mathrm{C} 3$	128.8(2)	N4- $\mathrm{Cl} 2-\mathrm{Cl1}$	122.4 (3)
$\mathrm{Cu}-\mathrm{N} 3-\mathrm{Cl4}$	113.3 (2)	N4-C13-C9	123.3 (2)
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{Cl} 4$	117.8 (2)	N4-Cl3-C14	116.3 (2)
$\mathrm{Cu}-\mathrm{N} 4-\mathrm{Cl2}$	129.2 (2)	C9-C13-C14	120.4 (2)
$\mathrm{Cu}-\mathrm{N} 4-\mathrm{Cl} 3$	112.8 (1)	N3-C14-C6	123.6 (2)
$\mathrm{Cl} 2-\mathrm{N} 4-\mathrm{Cl} 3$	117.7 (2)	$\mathrm{N} 3-\mathrm{Cl} 4-\mathrm{Cl} 3$	116.4 (2)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{N}$ l	176.7 (3)	C6-C14-C13	120.0 (2)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 2$	178.3 (3)	$\mathrm{Cu}^{\text {- }}-\mathrm{Nl}-\mathrm{Cu}$	92.59 (8)
N3-C3-C4	122.5 (2)	$\mathrm{Cu}^{\prime}-\mathrm{Nl}-\mathrm{Cl}$	118.9 (2)
C3-C4-C5	120.0 (2)	$\mathrm{Nl}^{1}-\mathrm{Cu}-\mathrm{Nl}$	87.41 (8)
C4-C5-C6	119.1 (2)	$\mathrm{N} 1^{1}-\mathrm{Cu}-\mathrm{N} 2$	99.49 (9)
C5-C6-C14	117.0 (2)	$\mathrm{Nl}^{\prime}-\mathrm{Cu}-\mathrm{N} 3$	90.58 (8)
C5-C6-C7	124.3(2)	$\mathrm{N} \mathrm{l}^{\prime}-\mathrm{Cu}-\mathrm{N} 4$	92.73 (7)

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: ORTEP (Johnson, 1965) in SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: MolEN.

We gratefully acknowledge financial support for this study from the EWU Foundation and the EWU Northwest Institute for Advanced Studies.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PT1036). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Julve, M.. Verdaguer, M., De Munno, G., Real, J. A. \& Bruno, G. (1993). Inorg. Chem. 32. 795-802.

Lloret. G., Julve, M.. Faus, J., Ruiz., R., Castro, I., Mollar, M. \& Philoche-Levisalles, M. (1992). Inorg. Chem. 31. 784-791.
Mauro, A. E., Klein, S. I., Saldana. J. S.. de Simone, C. A., ZukermanSchpector, J. \& Castellano, E. E. (1990). Polyhedron, 9. 2937-2939. Parker, O. J. \& Breneman, G. L. (1993). Polvhedron, 12, 891-895.
Sheldrick, G. M. (1990). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Fig. 1. Molecular structure and atomic numbering of cis$\left[\mathrm{PtCl}_{2}(\mathrm{MeBzSO})_{2}\right]$. Displacement ellipsoids are drawn at the 50% probability level. Only one of three locations of the disordered phenyl group is shown.

One of the benzyl groups was found to be disordered (see Experimental and Table 1). The bond distances and angles in the other phenyl ring have close to expected values (Table 2). The dihedral angles between the disordered benzyl groups and the coordination plane are $61(2)^{\circ}$; for the other benzyl group the dihedral angle is $33(1)^{\circ}$. The largest deviation from the least-squares plane through the pyramidally distorted $\mathrm{Cl}_{2} \mathrm{PtS}_{2}$ core is shown by $\mathrm{Cl}(1)$ [-0.054 (3) A]. The non-rigidly refined benzyl group is planar within 0.02 (1) \AA.

The $\mathrm{Pt}-\mathrm{S}$ and $\mathrm{Pt}-\mathrm{Cl}$ distances are normal compared with those found in similar compounds (see references cited above). The $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ angle seems to be the most rigid angle in compounds of the type cis$\left[\mathrm{PtCl}_{2} \text { (sulfoxide) }\right)_{2}$], only varying between $87.2(1)$ and $88.5(1)^{\circ}$, while the other angles around the Pt atom are more affected by the orientation of the sulfoxide group and steric and packing effects of the different types of sulfoxides.

Experimental

Benzyl methyl sulfoxide (racemic mixture) reacts with the platinum salt $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in aqueous ethanol solution to give the expected product cis- $\left[\mathrm{PtCl}_{2}(\mathrm{MeBzSO})_{2}\right]$ as a pale yellow precipitate. The crude material is a mixture of diastereomers. as evidenced by two peaks in the ${ }^{195} \mathrm{Pt}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ at -3509 and -3498 p.p.m. relative to $\mathrm{Na}_{2} \mathrm{PtCl}_{6}$ in $\mathrm{D}_{2} \mathrm{O}$ as external standard. The ${ }^{1} \mathrm{H}$ NMR spectrum confirmed the presence of diastereomers with two separate peaks for methyl resonance and two doublets of doublets for the diastereotopic benzyl protons of the sulfoxide ligand. The peaks are shifted downfield upon coordination, as expected (Farrell, Kiley, Schmidt \& Hacker 1990). Recrystallization from EtOH gave colourless crystals of one diastereomer:
$\delta(\mathrm{Pt})=-3498 ; \delta\left(\mathrm{S}-\mathrm{CH}_{3}\right)=3.31($ singlet $)$ and $\delta\left(\mathrm{S}-\mathrm{CH}_{2}\right)=$ 4.95 p.p.m. (doublets of doublet); $\nu(\mathrm{SO})=1103 \mathrm{~cm}^{-1}$ \{c.f. values found in $\mathrm{K}\left[\mathrm{PtCl}_{3}(\mathrm{MeBzSO})\right]$ (Almeida. Hubbard \& Farrell, 1992): $\delta(\mathrm{Pt})=-3011\left(d_{t}\right.$-acetone $) ; \delta\left(\mathrm{S}-\mathrm{CH}_{3}\right)=2.95$ (singlet) and $\delta\left(\mathrm{S}-\mathrm{CH}_{2}\right)=4.87$ p.p.m. (doublets of doublet); $\left.\nu(\mathrm{SO})=1099 \mathrm{~cm}^{-1}\right\}$.

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OS}\right)_{2}\right]$
$M_{r}=574.439$
Monoclinic
$P 2_{1} / c$
$a=8.4502$ (9) \AA
$b=12.616$ (2) \AA
$c=18.219(3) \AA$
$\beta=92.304(9)^{\circ}$
$V=1940.7(8) \AA^{3}$
$Z=4$
$D_{1}=1.959 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
 $\lambda=0.7107 \AA$

Cell parameters from 23 reflections
$\theta=8.8-24.7^{\circ}$
$\mu=7.794 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism
$0.17 \times 0.15 \times 0.13 \mathrm{~mm}$
Pale yellow

Data collection
CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction:
numerical by integration
from crystal shape
$T_{\text {min }}=0.333, T_{\text {max }}=$ 0.436

$$
\begin{aligned}
& R_{\text {int }}=0.037 \\
& \theta_{\max }=30^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=0 \rightarrow 17 \\
& l=0 \rightarrow 24 \\
& 3 \text { standard reflections } \\
& \text { monitored every } 60 \\
& \text { reflections } \\
& \text { intensity decay: } 0.90 \%
\end{aligned}
$$

6055 measured reflections
5895 independent reflections 3574 observed reflections $[I>1.5 \sigma(I)]$

Refinement

Refinement on F
$R=0.0529$
$n \cdot R=0.0521$
$S=1.776$
3574 reflections
178 parameters
H atoms: see below
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.0495$
$\Delta \rho_{\text {max }}=1.91 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.39 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors
from International Tables for X-ray Crystallography.
(1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {e } 4}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{1}, \mathbf{a}_{j}$.				
	x	$!$	こ	$U_{\text {cq }} / U_{\text {iso }}$
Pt	0.62149 (4)	0.18058 (3)	$0.85723(2)$	0.0405 (1)
Cll	0.4117 (3)	$0.1+13$ (2)	0.7766 (2)	0.063 (1)
Cl 2	0.6032 (4)	$0.0098(2)$	$0.9014(2)$	0.082 (3)
S 1	0.8169 (3)	$0.2217(2)$	0.9391 (1)	$0.050(1)$
S2	$0.6215(3)$	0.3450 (2)	$0.811811)$	0.041 (1)
O1	$0.7835(8)$	$0.3104(5)$	0.9893 (4)	$0.062(4)$
O2	$0.7380(8)$	0.4181 (5)	$0.84 .30(3)$	$0.057(4)$
Cl	0.996 (1)	0.2483 (9)	0.8891 (5)	0.055 (6)
C2	1.132(1)	$0.2816(7)$	0.9382 (5)	0.047 (5)
C3	1.249(1)	$0.2126(7)$	0.9612 (6)	0.054 (6)
C 4	1.375 (1)	$0.2+75$ (10)	1.0066 (6)	0.061 (6)
C5	1.385 (1)	0.3513 (10)	1.0289 (7)	$0.066(8)$
C6	1.266 (1)	0.4215 (9)	$1.0089(6)$	0.067 (8)
C7	$1.140(1)$	0) 3888 (8)	0.9623 (6)	$0.057(6)$
C8	$0.878(1)$	$0.111019)$	0.9945 (7)	0.084 (9)
Cl 10	$0.426(1)$	$0.4022(8)$	$0.8189(6)$	$0.062(6)$
C15	$0.635(1)$	0.3417 (x)	$0.7135(5)$	$0.052(6)$

$\mathrm{C} 20 \dagger$	$0.794(2)$	$0.305(2)$	$0.698(2)$	$0.058(6)$
$\mathrm{C} 21 \dagger$	$0.833(3)$	$0.199(2)$	$0.687(2)$	$0.058(6)$
$\mathrm{C} 22 \dagger$	$0.988(3)$	$0.172(2)$	$0.670(1)$	$0.058(6)$
$\mathrm{C} 23 \dagger$	$1.103(2)$	$0.251(3)$	$0.666(1)$	$0.058(6)$
$\mathrm{C} 24 \dagger$	$1.064(2)$	$0.356(3)$	$0.678(1)$	$0.058(6)$
$\mathrm{C} 25 \dagger$	$0.909(2)$	$0.384(2)$	$0.694(2)$	$0.058(6)$
$\mathrm{C} 30 \ddagger$	$0.81 .3(2)$	$0.333(2)$	$0.696(2)$	$0.050(6)$
$\mathrm{C} 31 \ddagger$	$0.874(3)$	$0.233(2)$	$0.679(1)$	$0.050(6)$
$\mathrm{C} 32 \ddagger$	$1.034(3)$	$0.222(2)$	$0.665(1)$	$0.050(6)$
$\mathrm{C} 33 \ddagger$	$1.133(2)$	$0.311(2)$	$0.667(1)$	$0.050(6)$
$\mathrm{C} 34 \ddagger$	$1.072(2)$	$0.410(2)$	$0.683(1)$	$0.050(6)$
$\mathrm{C} 35 \ddagger$	$0.911(2)$	$0.421(2)$	$0.698(1)$	$0.050(6)$
$\mathrm{C} 40 \S$	$0.793(2)$	$0.289(2)$	$0.693(2)$	$0.055(6)$
$\mathrm{C} 41 \S$	$0.792(2)$	$0.179(2)$	$0.683(2)$	$0.055(6)$
$\mathrm{C} 42 \S$	$0.933(3)$	$0.126(2)$	$0.669(1)$	$0.055(6)$
$\mathrm{C} 43 \S$	$1.074(2)$	$0.183(2)$	$0.666(1)$	$0.055(6)$
$\mathrm{C} 44 \S$	$1.075(2)$	$0.292(2)$	$0.676(2)$	$0.055(6)$
$\mathrm{C} 45 \S$	$0.934(3)$	$0.345(2)$	$0.690(2)$	$0.055(6)$

\dagger Occupancy $=0.40(3) ; U_{\text {iヶ० }} . \ddagger$ Occupancy $=0.32(3) ; U_{\text {1го }} . \quad$ § Oc. cupancy $=0.30(3) ; U_{\text {iぃo }}$.

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{P}-\mathrm{Cll}$	2.310 (3)	S2-O2	1.448 (7)
$\mathrm{Pl}-\mathrm{Cl} 2$	2.307 (3)	S2-C10	1.81 (1)
$\mathrm{Pt}-\mathrm{Sl}$	2.241 (2)	S2-C15	1.800 (9)
$\mathrm{Pt}-\mathrm{S} 2$	2.233 (2)	$\mathrm{C} 1-\mathrm{C} 2$	1.49 (1)
S1-O1	1.479 (7)	C15-C20	1.45 (2)
$\mathrm{S} 1-\mathrm{Cl}$	1.828 (10)	C15-C30	1.55 (2)
S1-C8	1.79 (1)	C15-C4)	1.55 (2)
$\mathrm{Cl1}-\mathrm{Pl}-\mathrm{Cl} 2$	87.8 (1)	Pl-S2-C10	109.3 (3)
$\mathrm{Cl} 1-\mathrm{Pl}-\mathrm{Sl}$	177.31 (10)	$\mathrm{Pt}-\mathrm{S2}-\mathrm{Cl} 5$	110.4 (3)
$\mathrm{ClI}-\mathrm{Pl}-\mathrm{S} 2$	88.56 (9)	O2-S2-C10	109.0 (4)
Cl2-Pl-SI	92.4 (1)	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 15$	109.5 (4)
$\mathrm{Cl} 2-\mathrm{Pl}-\mathrm{S} 2$	176.0(1)	$\mathrm{C10}-\mathrm{S} 2-\mathrm{Cl} 5$	100.1 (5)
$\mathrm{S} 1-\mathrm{Pl}-\mathrm{S} 2$	91.19 (9)	S1-C1-C2	112.8 (7)
$\mathrm{P}(-\mathrm{Si}$ - Ol	115.7 (3)	S2-C15-C20	106 (1)
$\mathrm{P}-\mathrm{Sl}-\mathrm{Cl}$	108.2 (3)	S2-C15-C30	108 (1)
$\mathrm{Pl}-\mathrm{Sl}-\mathrm{C8}$	112.6 (4)	S2-C15-C40	109 (1)
O1-SI-Cl	110.6 (5)	C20-C15-C30	14 (1)
OI-SI-C8	107.5 (5)	C20-C15-C40	7 (1)
$\mathrm{Cl}-\mathrm{Sl}-\mathrm{C8}$	101.4 (5)	C30-C15-C40	21 (1)
P - $-\mathrm{S} 2-\mathrm{O} 2$	117.1 (3)		

It was possible to resolve three positions of the disordered phenyl group (see Table 1) using a rigid phenyl group in the refinement with $\mathrm{C}-\mathrm{C} 1.40, \mathrm{C}-\mathrm{H} 0.95 \AA$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ 120°. An occupancy factor for each group was refined without restrictions: $0.40(3), 0.32$ (3) and $0.30(3)$ resulted, giving a total occupancy for the phenyl group of $1.02(5)$, which is an acceptable value. The H atoms of the disordered phenyl group were included in the rigid group and therefore refined with the whole group. The H atoms on $\mathrm{C} 8, \mathrm{C} 10$ and C 15 were not included. The H atoms of the ordered benzyl group were included in calculated positions and included in the structurefactor calculations. The largest residual maxima and minima in the $\Delta \rho$ map were $0.92 \AA$ from Sl and $1.55 \AA$ from $\mathrm{Cl}(1)$, respectively.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: SET-4 (Enraf-Nonius, 1989). Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1985). Program(s) used to solve structure: MITHRIL (direct methods) (Gilmore, 1983). Program(s) used to refine structure: TEXSAN $L S$. Software used to prepare material for publication: TEXSAN FINISH.

Financial support from Swedish Natural Science Research Council and the Crafoord Foundation is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1300). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU . England.

References

Almeida, S. G., Hubbard. J. L. \& Farrell, N. (1992). Inorg. Chim. Acta. 193. 149-157.
Antolini, L., Folli, U., Iarossi, D.. Schenetti. L. \& Taddei, F. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 955-961.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrell, N., Kiley, D. M., Schmidt. W. \& Hacker. M. P. (1990). Inorg. Chem. 29, 397-403.
Gilmore, C. J. (1983). MITHRIL. Computer Program for the Automatic Solution of Crstal Structures from X-ray Data. Department of Chemistry, University of Glasgow, Scotland.
Melanson, R. \& Rochon, F. D. (1975). Can. J. Chem. 53, 2371-2374.
Melanson, R. \& Rochon, F. D. (1987). Acta Crist. C43, 1869-1872.
Melanson, R., Chevrotire. C. \& Rochon, F. D. (1985). Acta Crist. C41, 1428-1431.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200) Research Forest Drive. The Woodlands, TX 77381, USA.

Acta Cryst. (1996). C52, 1093-1095

(Isothiocyanato)[(1RS,4RS,8SR,11SR)-1,4,8,11-tetraazacyclotetradecane]copper(II) Thiocyanate, $[\mathrm{Cu}(\mathrm{NCS})$ (cyclam)](SCN)

Tian-Huey Lu, ${ }^{a *}$ Tahir H. Tahirov, ${ }^{a}$ Yuh-Liang Liu, ${ }^{b}$ Chung-Sun Chung, ${ }^{\text {b }}$ Chung-Chia Huang ${ }^{\text {c and Yaw- }}$ Shiun Hong ${ }^{\text {c }}$
"Department of Physics, National Tsing Hua University, Hsinchu, Taiw'an 300, ${ }^{b}$ Department of Chemistry; National Tsing Hua University, Hsinchu, Taiwan 300, and 'Department of Applied Chemistry, Chung-Cheng Institiute of Technology; Taishi, Taiwan 335

(Received I3 July 1995; accepted 6 December 1995)

Abstract

The crystal structure of the title compound, $[\mathrm{Cu}(\mathrm{NCS})$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right](\mathrm{SCN})$, has been determined by X-ray diffraction. A mirror plane passes through the metal atom and bisects the complex with the isothiocyanato ligand lying on the plane. The $\mathrm{Cu}^{\mathrm{II}}$ ion is five-coordinate in a distorted square-pyramidal environment, with four amine N atoms in equatorial positions and the isothiocyanate N atom in an axial position; its coordination ge-

^[Acta Crystallographica Section C ISSN 0108-2701 ©1996]

